Cracked titanium film on an elastomeric substrate for highly flexible, transparent, and low-power strain sensors
نویسنده
چکیده
Strain-dependent cracking behaviors in thin titanium (Ti) films on polydimethylsiloxane (PDMS) substrates were systematically investigated for their application to sensitive, flexible, transparent, and portable strain sensors. When uniaxially elongated, vertical cracks were developed in the low-strain range, and beyond a critical strain, tilted cracks appeared to intersect the vertical cracks. The cracking behaviors were also dependent on Ti film thickness. The varying strain-dependent crack patterns produced a significant resistance change in response to the applied strain, particularly, in the high- and broad-strain range. For a 180-nm-thick Ti film on PDMS substrate, a gauge factor of 2 was achieved in the range of 30% to 50% strain. The operation power was extremely low. All the Ti films on PDMS substrates were transparent, highly flexible, and very easy to fabricate. These results suggest that cracked Ti films on PDMS substrates could be a viable candidate for realizing a low-cost, flexible, transparent, and portable strain sensor.
منابع مشابه
Fabrication and investigation of a transparent and flexible loudspeaker and microphone based on carbon nanotube
Transparent acoustic sensors and actuators are a new generation of acoustic transducers that can create an evolution in the microphone and loudspeakers industries. These transducers with properties like transparency, flexibility, flatness, very low weight and thickness have a great potential for various applications like public speakers, active noise cancelation systems, displays, cell phones a...
متن کاملFabrication of Graphene Oxide Thin Films on Transparent Substrate via a Low-Voltage Electrodeposion Technique
Graphene oxide (GO) thin films were simply deposited on fluorine doped tin oxide (FTO) substrate via a low-voltage electrodeposition. The GO and GO thin films were characterized by Zeta Potential, X-ray diffraction, Ultraviolet-Visible spectroscopy, atomic force microscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy and energy dispersive X-ray spectrosc...
متن کاملThickness Dependence of Sensitivity in Thin Film Tin Oxide Gas Sensors Deposited by Vapor Pyrolysis
Transparent SnO2 thin films were deposited on porcelain substrates using a chemical vapor deposition technique based on the hydrolysis of SnCl4 at elevated temperatures. A reduced pressure self-contained evaporation chamber was designed for the process where the pyrolysis of SnCl4 at the presence of water vapor was carried out. Resistive gas sensors were fabricated by providing ohmic contacts o...
متن کاملStructural Engineering of Metal-Mesh Structure Applicable for Transparent Electrodes Fabricated by Self-Formable Cracked Template
Flexible and transparent conducting electrodes are essential for future electronic devices. In this study, we successfully fabricated a highly-interconnected metal-mesh structure (MMS) using a self-formable cracked template. The template-fabricated from colloidal silica-can be easily formed and removed, presenting a simple and cost-effective way to construct a randomly and uniformly networked M...
متن کاملFabrication of functional nanowire devices on unconventional substrates using strain-release assembly.
We report three representative nanowire (NW) devices for applications in stretchable electronics, strain sensing, and optical sensing. Fabrication of such devices is based on a recently developed strain-release assembly method. NWs are first aligned transversely on an elastomeric substrate using the strain-release assembly. Constant resistance is achieved in silicon (Si) NW devices stretched up...
متن کامل